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ABSTRACT
In various real-world problems, we are presented with classification problems with positive and unlabeled
data, referred to as presence-only responses. In this article we study variable selection in the context of
presence only responses where the number of features or covariates p is large. The combination of presence-
only responses and high dimensionality presents both statistical and computational challenges. In this article,
we develop the PUlasso algorithm for variable selection and classification with positive and unlabeled
responses. Our algorithm involves using the majorization-minimization framework which is a generalization
of the well-known expectation-maximization (EM) algorithm. In particular to make our algorithm scalable,
we provide two computational speed-ups to the standard EM algorithm. We provide a theoretical guarantee
where we first show that our algorithm converges to a stationary point, and then prove that any stationary
point within a local neighborhood of the true parameter achieves the minimax optimal mean-squared error
under both strict sparsity and group sparsity assumptions. We also demonstrate through simulations that
our algorithm outperforms state-of-the-art algorithms in the moderate p settings in terms of classification
performance. Finally, we demonstrate that our PUlasso algorithm performs well on a biochemistry example.
Supplementary materials for this article are available online.
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1. Introduction

In many classification problems, we are presented with the
problem where it is either prohibitively expensive or impossible
to obtain negative responses and we onlyhave positive and unla-
beled presence-only responses (see, e.g., Ward et al. 2009). For
example, presence-only data are prevalent in geographic species
distribution modeling in ecology where presences of species in
specific locations are easily observed but absences are difficult
to track (see, e.g., Ward et al. 2009), text mining (see, e.g., Liu et
al. 2006), bioinformatics (see, e.g., Elkan and Noto 2008), and
many other settings. Classification with presence-only data is
sometimes referred to as PU-learning (see, e.g., Liu et al. 2006;
Elkan and Noto 2008). In this article, we address the problem of
variable selection with presence-only responses.

1.1. Motivating Application: Biotechnology

Although the theory and methodology we develop apply
generally, a concrete application that motivates this work
arises from biological systems engineering. In particular,
recent high-throughput technologies generate millions of
biological sequences from a library for a protein or enzyme
of interest (see, e.g., Fowler and Fields 2014; Hietpas, Jensen,
and Bolon 2011). In Section 5, the enzyme of interest is beta-
glucosidase (BGL) which is used to decompose disaccharides
into glucose which is an important step in the process of
converting plant matter to biofuels (Romero, Tran, and Abate
2015). The performance of the BGL enzyme is measured by
the concentration of glucose that is produced and a positive
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response arises when the disaccharide is decomposed to glucose
and a negative response arises otherwise. Hence, there are
two scientific goals: firstly to determine how the sequence
structure influences the biochemical functionality; secondly,
using this relationship to engineer and design BGL sequences
with improved functionality.

Given these two scientific goals, we are interested in both
the variable selection and classification problem since we want
to determine which positions in the sequence most influence
positive responses as well as classify which protein sequences are
functional. Furthermore, the number of variables here is large
since we need to model long and complex biological sequences.
Hence, our variable selection problem is high-dimensional. In
Section 5, we demonstrate the success of our algorithm in this
application context.

1.2. Problem Setup

To state the problem formally, let x ∈ R
p be a p-dimensional

covariate such that x ∼ PX , y ∈ {0, 1} an associated response,
and z ∈ {0, 1} an associated label. If a sample is labeled (z = 1),
its associated outcome is positive (y = 1). On the other hand, if a
sample is unlabeled (z = 0), it is assumed to be randomly drawn
from the population with only covariates x not the response y
being observed. Given n� labeled and nu unlabeled samples, the
goal is to draw inferences about the relationship between y and x.
We model the relationship between the probability of a response
y being positive and (x, θ) using the standard logistic regression
model
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Figure 1. High-throughput sequencing diagram.

P(y = 1|x; θ) = eηθ (x)

1 + eηθ (x)
, ηθ (x) = θTx (1)

and y|x ∼ P(·|x; θ∗) where θ∗ ∈ R
p refers to the unknown true

parameter. Also, we assume the label z is assigned only based
on the latent response y independent from x. Viewing z as a
noisy observation of latent y, this assumption corresponds to a
missing at random assumption, a classical assumption in latent
variable problems.

Given such z, we select nl labeled and nu unlabeled samples
from samples with z = 1 and z = 0, respectively. An important
issue is how positive and unlabeled samples are selected. In this
article, we adopt a case-control approach (e.g., McCullagh and
Nelder 2006) which is suitable for our biotechnology application
and many others. In particular, we introduce another binary
random variable s ∈ {0, 1} representing whether a sample is
selected (s = 1) or not (s = 0) to model different sampling
rates in selecting labeled and unlabeled samples. Since there are
n� labeled and nu unlabeled samples, we have

P(z = 1|s = 1)

P(z = 0|s = 1)
= n�

nu
,

and we see only selected samples, (xi, zi, si = 1)
n�+nu
i=1 . It is fur-

ther assumed that the selection is only based on the label z, inde-
pendent of x and y. We note that this case-control scheme (Lan-
caster and Imbens 1996; Ward et al. 2009), opposed to the single-
training sampling scheme (Elkan and Noto 2008) is needed to
model the case where unlabeled samples are random draws from
the original population, since positive samples have to be over-
represented in the dataset to satisfy such model assumption.

In our biotechnology application the case-control setting is
appropriate since the high-throughput technology leads to the
unlabeled samples being drawn randomly from the original
population (see Romero, Tran, and Abate 2015 for details). As
is displayed in Figure 1, sequences are selected randomly from a
library and positive samples are generated through a screening
step. Hence, the positive sequences are sampled randomly from
the positive sequences while the unlabeled sequences are based
on random sampling from the original sequence library. This
experiment corresponds exactly to the case-control sampling
scheme discussed.

Furthermore, the true positive (TP) prevalence is

π := P(y = 1) =
∫ eηθ∗ (x)

1 + eηθ∗ (x)
dPX(x) ∈ (0, 1) (2)

and π is assumed known. In our biotechnology application, π

is estimated precisely using an alternative experiment (Romero,
Tran, and Abate 2015).

In the biological sequence engineering example, (xi)
n�+nu
i=1

correspond to binary covariates of biological sequences. In the
BGL example, for each of the d positions, there are M possible
categories of amino acids. Therefore, the covariates correspond
to the indicator of an amino acid appearing in a given posi-
tion (p = O(dM)) as well as pairs of amino acids (p =
O(d2M2)), and so on. Here d = O(1000) and M ≈ 20 make
the problem high-dimensional.

High-dimensional PU-learning presents computational
challenges since the standard logistic regression objective leads
to a nonconvex likelihood when we have positive and unlabeled
data. To address this challenge, we build on the expectation-
maximization (EM) procedure developed in Ward et al. (2009)
and provide two computational speed-ups. In particular, we
introduce the PUlasso for high-dimensional variable selection
with positive and unlabeled data. Prior work that involves the
EM algorithm in the low-dimensional setting in Ward et al.
(2009) involves solving a logistic regression model at the M-step.
To adapt to the high-dimensional setting and make the problem
scalable, we include an �1-sparsity or �1/�2-group sparsity
penalty and provide two speed-ups. First, we use a quadratic
majorizer of the logistic regression objective, and secondly, we
use techniques in linear algebra to exploit sparsity of the design
matrix X which commonly arises in the applications we are
dealing with. Our PUlasso algorithm fits into the majorization-
minimization (MM) framework (see, e.g., Lange, Hunter, and
Yang 2000; Ortega and Rheinboldt 2000) for which the EM
algorithm is a special case.

1.3. Our Contributions

In this article we make the following major contributions:

• Develop the PUlasso algorithm for doing variable selection
and classification with presence-only data. In particular, we
build on the existing EM algorithm developed in Ward et
al. (2009) and add two computational speed-ups, quadratic
majorization and exploiting sparse matrices. These two
speed-ups improve speed by several orders of magnitude
and allows our algorithm to scale to datasets with millions of
samples and covariates.

• Provide theoretical guarantees for our algorithm. First we
show that our algorithm converges to a stationary point of the
nonconvex objective, and then show that any stationary point
within a local neighborhood of θ∗ achieves the minimax
optimal mean-squared error for sparse vectors. To provide
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statistical guarantees we extend the existing results of gener-
alized linear model with a canonical link function (Negahban
et al. 2012; Loh and Wainwright 2006) to a noncanonical link
function and show optimality of stationary points of noncon-
vex objectives in high-dimensional statistics. To the best of
our knowledge the PUlasso is the first algorithm where PU-
learning is provably optimal in the high-dimensional setting.

• Demonstrate through a simulation study that our algorithm
performs well in terms of classification compared to state-
of-the-art PU-learning methods in Du Marthinus, Niu,
and Sugiyama (2015), Elkan and Noto (2008), and Liu et
al. (2006), both for low-dimensional and high-dimensional
problems.

• Demonstrate that our PUlasso algorithm allows us to develop
improved protein-engineering approaches. In particular, we
apply our PUlasso algorithm to sequences of BGL enzymes to
determine which sequences are functional. We demonstrate
that sequences selected by our algorithm have a good pre-
dictive accuracy and we also provide a scientific experiment
which shows that the variables selected lead to BGL proteins
that are engineered with improved functionality.

The remainder of the article is organized as follows: in Sec-
tion 2 we provide the background and introduce the PUlasso
algorithm, including our two computational speed-ups and pro-
vide an algorithmic guarantee that our algorithm converges to
a stationary point; in Section 3 we provide statistical mean-
squared error guarantees which show that our PUlasso algo-
rithm achieves the minimax rate; Section 4 provides a com-
parison in terms of classification performance of our PUlasso
algorithm to state-of-the-art PU-learning algorithms; finally in
Section 5, we apply our PUlasso algorithm to the BGL data
application and provide both a statistical validation and simple
scientific validation for our selected variables.

Notation: For scalars a, b ∈ R, we denote a ∧ b =
min{a, b}, a ∨ b = max{a, b}. Also, we denote a � b if
there exists a universal constant c > 0 such that a ≥ cb. For
v, w ∈ R

p, we denote �1, �2, and �∞ norm as ‖v‖1 =∑n
i=1 |vi|,

‖v‖2 = √
vTv, and ‖v‖∞ = supj |vj| and use v ◦ w ∈ R

p to
denote Hadamard product (entry-wise product) of v, w. For a
set S, we use |S| to denote the cardinality of S. For any subset
S ⊆ {1, . . . , p}, vS ∈ R

|S| denotes the subvector of the vector
v by selecting the components with indices in S. Likewise for
matrix A ∈ R

n×p, AS ∈ R
n×|S| denotes a submatrix by selecting

columns with indices in S. For a group �1/�2 norm, the norm is
characterized by a partition G := (g1, . . . , gJ) of {1, . . . , p} and
associated weights (wj)

J
1. We let G := (G, (wj)

J
1) and define the

�1/�2 norm as ‖v‖G,2,1 := ∑
j wj‖vgj‖2. We often need a dual

norm of ‖·‖G,2,1. We use Ḡ to denote Ḡ := (G, (w−1
j )

J
1) and write

‖v‖Ḡ,2,∞ = maxj w−1
j ‖vgj‖2. Finally, we write Bq(r, v) for an �q

ball with radius r centered at v ∈ R
p, and denote as Bq(r) if

v = 0.
For a convex function f : Rp → R, we use ∂f (x) to denote the

set of subgradients at the point x and�f (x) to denote an element
of ∂f (x). Also for a function f + g such that f is differentiable
(but not necessarily convex) and g is convex, we define ∂(f +
g)(x) := {�f (x) + h ∈ R

p; h ∈ ∂g(x)} with a slight abuse of

notation. Also, we say f (n) = O(g(n)), f (n) = �(g(n)), and
f (n) = �(g(n)) if |f | is asymptotically bounded above, bounded
below, and bounded above and below by g.

For a random variable x ∈ R, we say x is a sub-Gaussian
random variable with sub-Gaussian parameter σx > 0 if
E[exp(t(x − E[x]))] ≤ exp(t2σ 2

x /2) for all t ∈ R and we denote
as x ∼ subG(σ 2

x ) with a slight abuse of notation. Similarly, we
say x is a sub-exponential random variable with sub-exponential
parameter (ν, b) if E[exp(t(x − E[x]))] ≤ exp(t2ν2/2) for all
|t| ≤ 1/b and we denote as x ∼ subExp(ν, b). A collection of
random variables (x1, . . . , xn) is referred to as xn

1 .

2. PUlasso Algorithm

In this section, we introduce our PUlasso algorithm. First, we
discuss the prior EM algorithm approach developed in Ward
et al. (2009) and apply a simple regularization scheme. We
then discuss our two computational speed-ups, the quadratic
majorization for the M-step and exploiting sparse matrices.
We prove that our algorithm has the descending property and
converges to a stationary point, and show that our two speed-
ups increase speed by several orders of magnitude.

2.1. Prior Approach: EM Algorithm With Regularization

First we use the prior result in Ward et al. (2009) to determine
the observed log-likelihood (in terms of the zis) and the full
log-likelihood (in terms of the unobserved yis and zis). The
following lemma, derived in Ward et al. (2009), gives the form
of the observed and the full log-likelihood in the case-control
sampling scheme.

Lemma 2.1 (Ward et al. 2009). The observed log-likelihood
log L(θ ; xn

1 , zn
1 ) for our presence-only model in terms of

(xi, zi, si = 1)n
i=1 is

log L(θ ; xn
1 , zn

1 ) = log

(∏
i
Pθ (zi|xi, si = 1)

)

=
n∑

i=1
log

⎛⎝ nl
πnu

eθT x

1 + (1 + nl
πnu

)eθT x

⎞⎠zi

×
(

1 + eθT x

1 + (1 + nl
πnu

)eθT x

)1−zi

. (3)

The full log-likelihood log Lf (θ ; xn
1 , yn

1 , zn
1 ) in terms of (xi, yi, zi,

si = 1)n
i=1 is

log Lf (θ ; xn
1 , yn

1 , zn
1 )

= log

(∏
i
Pθ (yi, zi|xi, si = 1)

)

∝
n∑

i=1

[
yi

(
xT

i θ + log
n� + πnu

πnu

)
− log

(
1 + exp

(
xT

i θ + log
n� + πnu

πnu

))]
, (4)

where n�, nu are the number of positive and unlabeled observa-
tions, n = n� + nu and π is defined in (2).
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The proof can be found in Ward et al. (2009). Our goal is to
estimate the parameter θ∗ := argminθ∈Rp E[− log L(θ ; xn

1 , zn
1 )],

which we assume to be unique. In the setting where p is large, we
add a regularization term. We are interested in cases when there
exists or does not exist a group structure within covariates. To be
general we use the group �1/�2-penalty for which �1 is a special
case. Hence, our overall optimization problem is

minimize
θ

− 1
n

n∑
i=1

log L(θ ; xi, zi) + Pλ(θ), (5)

where log L(θ ; xi, zi) is the observed log-likelihood. For a
penalty term, we use the group sparsity regularizer

Pλ(θ) := λ‖θ‖G,2,1 = λ

J∑
j=1

wj‖θgj‖2 (6)

with G = (G, (wj)
J
j=1), such that G := (g1, . . . , gJ) is a partition

of (1, . . . , p) and wj > 0. We note that ‖θ‖G,2,1 = ‖θ‖1 if J = p,
gj = {j} and wj = 1, ∀j. For notational convenience we denote
the overall objective Fn(θ) as

Fn(θ) := − 1
n

n∑
i=1

log L(θ ; xi, zi) + Pλ(θ) = Ln(θ) + Pλ(θ),

(7)

where we define the loss function Ln(θ) as Ln(θ) :=
−n−1∑n

i=1 log L(θ ; xi, zi) and Pλ(θ) = λ‖θ‖G,2,1 = λ
∑J

j=1 wj
‖θgj‖2.

In the original proposal of the group lasso, Yuan and
Lin (2006) recommended to use (6) for orthonormal group
matrices Xgj , that is, XT

gj Xgj/n = I|gj|×|gj|. If group matrices
are not orthonormal, however, it is unclear whether we should
orthonormalize group matrices prior to application of the group
lasso. This question was addressed in Simon and Tibshirani
(2012), and the authors provide a compelling argument that
prior orthonormalization has both theoretical and computa-
tional advantages. In particular, Simon and Tibshirani (2012)
demonstrated that the following orthonormalization procedure
is intimately connected with the uniformly most powerful
invariant testing for inclusion of a group. To describe this
orthonormalization explicitly, we obtain standardized group
matrices Qgj ∈ R

n×|gj| and scale matrices Rgj ∈ R
|gj|×|gj| for

j ≥ 2 using the QR-decomposition such that

P0Xgj = Qgj Rgj and QT
gj Qgj = nI|gj|×|gj|, (8)

where P0 = (In×n − 1n1T
n

n ) is the projection matrix onto the
orthogonal space of 1n. Letting Q := [1n, Qg2 , . . . , QgJ ] =
[qT

1 , . . . , qT
n ], the original optimization problem (5) can be

expressed in terms of qis and becomes

argmin
ν

⎧⎨⎩− 1
n

n∑
i=1

log L(ν; qi, zi) + λ

J∑
j=1

wj‖νgj‖2

⎫⎬⎭ , (9)

where we use the transformation θ to ν

θgj =
{

ν1 −∑J
j=2

1T
n

n Xgj R−1
gj νgj j = 1

R−1
gj νgj j ≥ 2.

(10)

We note that this corresponds to the standard centering and
scaling of the predictors in the case of standard lasso. For more
discussion about group lasso and standardization (see, e.g.,
Huang, Breheny, and Ma 2012).

A standard approach to performing this minimization is to
use the EM-algorithm approach developed in Ward et al. (2009).
In particular, we treat yn

1 as hidden variables and estimate them
in the E-step. Then use estimated ŷn

1 to obtain the full log-
likelihood log Lf (θ ; xn

1 , ŷn
1 , zn

1 ) in the M-step.

Algorithm 1: Regularized EM algorithm for the optimiza-
tion problem (5)

1 Input: an initialization θ0 such that Fn(θ0) ≤ Fn(θnull)
2 for m=0,1,2,…, do

• E-step : estimate yi at θ = θm by

ŷi(θ
m) =

(
exT

i θm

1 + exT
i θm

)1−zi

(11)

• M-step : obtain θm+1 by

θm+1 ∈ argmin
θ

{
− 1

n

n∑
i=1

(
ŷi(θ

m)
(
xT

i θ + b
)

− log(1 + exT
i θ+b)

)
+ Pλ(θ)

}
(12)

where b := log
n� + πnu

πnu

3 end

The E-step follows from

Eθm[yi|zi, xi, si = 1] =
(

exT
i θm

1 + exT
i θm

)1−zi

since zi = 1 implies

yi = 1 and when zi = 0, observations in the unlabeled data
are random draws from the population. An initialization θ0 can
be any R

p vector such that Fn(θ0) ≤ Fn(θnull) where θnull is
the parameter corresponding to the intercept-only model. If we
are provided with no additional information, we may use θnull
for the initialization. We use θ0 = θnull as the initialization for
the remainder of the article. For the M-step, it was originally
proposed to use a logistic regression solver. We can use a regu-
larized logistic regression solver such as the glmnet R package to
solve (12). We discuss a computationally more efficient way of
solving (12) in the subsequent section.

2.2. PUlasso: A Quadratic Majorization for the M-Step

Now we develop our PUlasso algorithm which is a faster algo-
rithm for solving (5) by using quadratic majorization for the
M-step. The main computational bottleneck in algorithm 1 is
the M-step which requires minimizing a regularized logistic
regression loss at each step. This subproblem does not have a
closed-form solution and needs to be solved iteratively, causing
inefficiency in the algorithm. However, the most important
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property of the objective function in the M-step is that it is a
surrogate function of the likelihood which ensures the descend-
ing property (see, e.g., Lange, Hunter, and Yang 2000). Hence,
we replace a logistic loss function with a computationally faster
quadratic surrogate function. In this aspect, our approach is an
example of the more general MM framework (see, e.g., Lange,
Hunter, and Yang 2000; Ortega and Rheinboldt 2000).

On the other hand, our loss function itself belongs to a
generalized linear model family, as we will discuss in more detail
in the subsequent section. A number of works have developed
methods for efficiently solving regularized generalized linear
model problems. A standard approach is to make a quadratic
approximation of the log-likelihood and use solvers for a reg-
ularized least-square problem. Works include using an exact
Hessian (Lee et al. 2006; Friedman, Hastie, and Tibshirani 2010),
an approximate Hessian (Meier, Van De Geer, and Bühlmann
2008) or a Hessian bound (Krishnapuram et al. 2005; Simon and
Tibshirani 2012; Breheny and Huang 2013) for the second-order
term. Solving a second-order approximation problem amounts
to taking a Newton step, thus convergence is not guaranteed
without a step-size optimization (Lee et al. 2006; Meier, Van De
Geer, and Bühlmann 2008), unless a global bound of the Hessian
matrix is used. Our work can be viewed as in the line of these
works where a quadratic approximation of the loss function is
made and then an upper bound of the Hessian matrix is used to
preserve a majorization property.

A coordinate descent (CD) algorithm (Wu and Lange 2008;
Friedman, Hastie, and Tibshirani 2010) or a block coordinate
descent (BCD) algorithm (Yuan and Lin 2006; Puig et al. 2011;
Simon and Tibshirani 2012; Breheny and Huang 2013) has been
a very efficient and standard way to solve a quadratic problem
with �1 penalty or �1/�2 penalty and we also take this approach.
When a feature matrix X ∈ R

n×p is sparse, we can set up
the algorithm to exploit such sparsity through a sparse linear
algebra calculation. We discuss this implementation strategy in
Section 2.2.1.

Now we discuss the PUlasso algorithm and the construction
of quadratic surrogate functions in more details. Using the
MM framework, we construct the set of majorization functions
−Q(θ ; θm) with the following two properties

Q(θm; θm) = Q(θm; θm), Q(θ ; θm) ≤ Q(θ ; θm), ∀θ , (13)

where our goal is to minimize −Q where Q(θ ; θm) :=
n−1Eθm[log Lf (θ)|zn

1 , xn
1 , sn

1 = 1].
Using the Taylor expansion of Q(θ ; θm) at θ = θm, we obtain

Q(θ ; θm)

= Q(θm; θm) + 1
n
[XT(ŷ(θm) − μ∗(θm))]T�m

− 1
2n

∫ 1

0
�T

mXTW(θ + s�m)X�mds

≥ Q(θm; θm) + 1
n
(ŷ(θm) − μ∗(θm))TX�m − 1

8n
�T

mXTX�m,

where we define �m := θ − θm, μ∗(θm)i := exT
i θm+b

1 + exT
i θm+b

,

b := log
n� + πnu

πnu
and W ∈ R

n×n is a diagonal matrix with

[W(θ)]ii := μ∗(θ)i(1 − μ∗(θ)i). The inequality follows from
W(θ) ≺ 1

4 In×n, ∀ θ . Thus, setting Q as follows

Q(θ ; θm) := Q(θm; θm) + 1
n
(ŷ(θm) − μ∗(θm))T(Xθ − Xθm)

− 1
8n

(θ − θm)TXTX(θ − θm),

Q satisfies both conditions in (13). Also with some algebra, it
follows that

Q(θ ; θm) = − 1
8n

(4(ŷ(θm) − μ∗(θm)) + Xθm − Xθ)T(4(ŷ(θm)

−μ∗(θm)) + Xθm − Xθ) + c(θm)

for some c(θm) which does not depend on θ . Hence, −Q acts as
a quadratic surrogate function of −Q which replaces our M-step
for the original EM algorithm. Therefore, our PUlasso algorithm
can be represented as follows.

Algorithm 2: PUlasso : QM-EM algorithm for the opti-
mization problem (5)

1 Input: an initialization θ0 such that Fn(θ0) ≤ Fn(θnull)
2 for m=0,1,2,…, do

• E-step : estimate yi at θ = θm by

ŷi(θ
m) =

(
exT

i θm

1 + exT
i θm

)1−zi

(14)

• QM-EM step : obtain θm+1 by

1. create a working response vector u(θm) at θ = θm

u(θm) := 4(ŷ(θm) − μ∗(θm)) + Xθm (15)

2. solve a quadratic loss problem with a penalty

θm+1 ∈ argmin
θ

{
1

2n
(u(θm) − Xθ)T(u(θm)

−Xθ) + 4Pλ(θ)

}
(16)

3 end

Now we state the following proposition to show that both
the regularized EM and PUlasso algorithms have the desirable
descending property and converge to a stationary point. For
convenience we define the feasible region �̃0, which contains
all θ whose objective function value is better than that of the
intercept-only model, defined as

�̃0 := {θ ∈ R
p;Fn(θ) ≤ Fn(θnull)}, (17)

where θnull = [log π
1−π

, 0, . . . , 0]T , an estimate corresponding
to the intercept-only model. We let S be the set of stationary
points satisfying the first-order optimality condition, that is,

S := {θ ; ∃�Fn(θ) ∈ ∂Fn(θ) such that
�Fn(θ)T(θ ′ − θ) ≥ 0, ∀ θ ′ ∈ �̃0}. (18)

One of the important conditions is to ensure that all iterates of
our algorithm lie in �̃0 which is trivially satisfied if θ0 = θnull.
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Proposition 2.1. The sequence of estimates (θm) obtained by
Algorithms 1 or 2 satisfies

(i) Fn(θm) ≥ Fn(θm+1), and Fn(θm) > Fn(θm+1) if θm �∈ S.
(ii)All limit points of (θm)∞1 are elements of the set S, and

Fn(θm) converges monotonically to Fn(θ̃) for some θ̃ ∈ S.
(iii)The sequence (θm) has at least one limit point, which must

be a stationary point of Fn(θ) by (ii).

Proposition 2.1 shows that we obtain a stationary point of
the objective (7) as an output of both the regularized EM algo-
rithm and our PUlasso algorithm. The proof uses the standard
arguments based on Jensen’s inequality, convergence of EM
algorithm and MM algorithms and is deferred to the supplement
S1.1.

2.2.1. Block Coordinate Descent Algorithm for M-Step
and Sparse Calculation

In this section, we discuss the specifics of finding a minimizer
for the M-step (16) for each iteration of our PUlasso algorithm.
After preprocessing the design matrix as described in (9) and
(10), we solve the following optimization problem using a stan-
dard block-wise coordinate descent algorithm.

argmin
ν

⎧⎨⎩ 1
2n

‖u − Qν‖2
2 + 4λ

J∑
j=1

wj‖νgj‖2

⎫⎬⎭ . (19)

Algorithm 3: Fitting (19) using Block Coordinate Descent
1 Given initial parameter ν = [ν1, νT

g2 . . . , νT
gJ ]T , a residual

vector r = u −∑J
j=1 Qgjνgj

2 for j=1 do
3 update ν1 and r using (20)-(22)
4 end
5 repeat
6 for j=2,…,J do
7

zj = n−1QT
gj r + νgj (20)

ν′
gj ← S(zj, 4λwj) (21)

r′ ← r + Qgj(νgj − ν′
gj) (22)

r ← r′, νgj ← ν′
gj

8 end
9 until convergence;

S(., λ) is the soft thresholding operator defined as follows

S(z, λ) :=
⎧⎨⎩(‖z‖2 − λ)

z
‖z‖2

if ‖z‖2 > λ

0 otherwise.

Note that we do not need to keep updating the intercept ν1 since
Qgj , j ≥ 2 are orthogonal to Qg1 ≡ 1n. For more details (see, e.g.,
Breheny and Huang 2013).

For our biochemistry example and many other examples, X
is a sparse matrix since each entry is an indicator of whether an

amino acid is in a position. In Algorithm 3, we do not exploit
this sparsity since Q will not be sparse even when X is sparse. If
we want to exploit sparse X we use the following algorithm.

Algorithm 4: Fitting (19) and exploiting sparse X
1 Given initial parameter ν = [ν1, νT

g2 . . . , νT
gJ ]T ,

r = u − P0(
∑J

j=1 Xgj R−1
gj νgj)

2 for j=1 do
3 update ν1 and r using (20)–(22).
4 end
5 repeat
6 for j=2,…,J do
7

zj = n−1R−1
gj XT

gj r − R−1
gj

(
XT

gj1n/n
) (
1T

n r/n
)+ νgj

(23)
ν′

gj ← S(zj, 4λwj) (24)

r′ ← r + Xgj R−1
gj (νgj − ν′

gj) (25)

aj ← 1T
n Xgj R−1

gj (νgj − ν′
gj)/n (26)

r ← r′, νgj ← ν′
gj

8 end
9

r ← r −
⎛⎝ J∑

j=2
aj

⎞⎠1n (27)

10 until convergence;

To explain the changes to this algorithm, we modify (20) and
(22) so that we directly use X rather than Q to exploit the sparsity
of X. Using (8), we first substitute Qgj with P0Xgj R−1

gj to obtain

zj = n−1R−1
gj XT

gj P0r + νgj (28)

r′ ← r + P0Xgj R−1
gj (νgj − ν′

gj). (29)

However, carrying out (28)–(29) instead of (20)–(22) incurs
a greater computational cost. Calculating QT

gj r requires n|gj|
operations. On the contrary, the minimal number of operations
required to do a matrix multiplication of R−1

gj XT
gj P0r is n2 +

n|gj|+ |gj|2, when it is parenthesized as R−1
gj (XT

gj(P0r)). In many
cases |gj| is small (for standard lasso, |gj| = 1, ∀j and for our
biochemistry example, |gj| is at most 20), but the additional
increase in n can be very costly (especially in our example where
n is over 4 million).

For a more efficient calculation, we first exploit the structure
of P0 = In×n − 1n1T

n
n when multiplying P0 with a vector,

which reduces the cost from n2 operations to 2n operations.
Also, we carry out calculations using Xgj instead of P0Xgj when
calculating residuals and do the corrections all at once.

Before going into detail about (23)–(26), we first discuss the
computational complexity. Comparing (23) with (20), the first
term only requires an additional |gj|2 operations. The second
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term (XT
gj1n)/n can be stored during the initial QR decomposi-

tion; thus the only potentially expensive operation is calculating
an average of r which requires n operations. Comparing (25)
with (22), only |gj|2 additional operations are needed when we
parenthesize as Xgj(R−1

gj (νgj − ν′
gj)). Note that if we had kept P0,

there would have been an additional 2n operations even though
we had used the structure of P0. In the calculation of (27),
we note that n operations are involved in subtracting

∑J
j=2 aj

from r because aj are scalars. In summary, we essentially reduce
additional computational cost from O(n2) to nJ per cycle by
carrying out (23)–(26) instead of (28)–(29).

Now we derive/explain the formulas in Algorithm 4. To make
quantities more explicit, we use rj and r′

j to denote a residual
vector before/after update at j using Algorithm 3 and r̃j and
r̃′

j using Algorithm 4. By definition, rj+1 = r′
j and r̃j+1 =

r̃′
j . Also we note that in the beginning of the cycle r2 = r̃2.

Equation (23) can be obtained from (28) by replacing P0 with
In×n− 1n1T

n
n . Now we show that modified residuals still correctly

update coefficients. Starting from j = 2, a calculated residual r̃′
j

is a constant vector off from a correct residual r′
j , as we see below

r
′
j = rj + P0Xgj R−1

gj (νgj − ν′
gj) (30)

= rj + Xgj R−1
gj (νgj − ν′

gj) − 1n
1T

n
n

Xgj R−1
gj (νgj − ν′

gj) (31)

= r̃′
j − 1naj, (32)

where we recall that aj = 1T
n

n Xgj R−1
gj (νgj − ν′

gj). We note P0r′
j =

P0r̃′
j because P01n = 0. Then the next zj+1, thus new νgj+1 , are

still correctly calculated since

zj+1 = n−1R−1
gj+1 XT

gj+1 P0rj+1 + νgj+1

= n−1R−1
gj+1 XT

gj+1 P0r̃j+1 + νgj+1 . (33)

The next residual r̃′
j+1 is again off by a constant from the cor-

rect residual r′
j+1. To see this, r′

j+1 = rj+1 +P0Xgj+1 R−1
gj+1(νgj+1 −

ν′
gj+1) = r̃j+1 +P0Xgj+1 R−1

gj+1(νgj+1 −ν′
gj+1)−aj1n by (29). Going

through (30)–(32) with j being replaced by j + 1, we obtain

r′
j+1 = r̃′

j+1 − (aj + aj+1)1n.

Inductively, we have correct zj, thus νgj for all j ≥ 2. At the end
of the cycle, we correct the residual vector all at once by letting
r ← r − (

∑J
j=2 aj)1n.

2.3. R Package Details

We provide a publicly available R implementation of our algo-
rithm in the PUlasso package. For a fast and efficient imple-
mentation, all underlying computation is implemented in C++.
The package uses warm start and strong rule (Friedman et al.
2007; Tibshirani et al. 2012), and a cross-validation function is
provided as well for the selection of the regularization parameter
λ. Our package supports a parallel computation through the R
package parallel.

2.4. Run-Time Improvement

Now we illustrate the run-time improvements for our two
speed-ups. Note that we only include p up to 100 so that we
can compare to the original regularized EM algorithm. For
our biochemistry application p = O(104) and n = O(106)
which means the regularized EM algorithm is too slow to run
efficiently. Hence, we use smaller values of n and p in our run-
time comparison. It is clear from our results that the quadratic
majorization step is several orders of magnitude faster than the
original EM algorithm, and exploiting the sparsity of X provides
a further 30% speed-up.

3. Statistical Guarantee

We now turn our attention to statistical guarantees for our
PUlasso algorithm under the statistical model (1). In particular,
we provide error bounds for any stationary point of the noncon-
vex optimization problem (5). Proposition 2.1 guarantees that
we obtain a stationary point from our PUlasso algorithm.

We first note that the observed likelihood (3) is a generalized
linear model (GLM) with a noncanonical link function. To see
this, we rewrite the observed likelihood (3) as

L(θ ; xn
1 , zn

1 ) =
n∏

i=1
exp (ziηi − A(ηi)) (34)

after some algebraic manipulations, where we define ηi :=
log(n�/πnu) + xT

i θ − log(1 + exT
i θ ) and A(ηi) := log(1 + eηi).

Also, we let μ(ηi) := A′(ηi), which is the conditional mean
of zi given xi, by the property of exponential families. For the
convenience of the reader, we include the derivation from (3)
to (34) in the supplementary materials (S2.1). The mean of zi
is related with θTxi via the link function g through g(μ(ηi)) =
θTxi, where g satisfies (g ◦μ)−1(θTxi) = log(n�/πnu)+ xT

i θ −
log(1 + exT

i θ ). Because (g ◦ μ)−1 is not the identity function,
the likelihood is not convex anymore. For a more detailed
discussion about the GLM with noncanonical link (see, e.g.,
McCullagh and Nelder 2006; Fahrmeir and Kaufmann 1985).

A number of works have been devoted to sparse estimation
for generalized linear models. A large number of previous works
have focused on generalized linear models with convex loss
functions (negative log-likelihood with a canonical link) plus �1
or �1/�2 penalties. Results with the �1 penalty include a risk con-
sistency result (van de Geer 2008) and estimation consistency
in �2 or �1 norms (Kakade et al. 2010). For a group-structured
penalty, a probabilistic bound for the prediction error was given
in Meier, Van De Geer, and Bühlmann (2008). An �2 estimation
error bound in the case of the group lasso was given in Blazère,
Loubes, and Gamboa (2014).

Negahban et al. (2012) rederived an �2 error bound of an
�1-penalized GLM estimator under the unified framework for
M-estimators with a convex loss function. This result about
the regularized GLM was generalized in Loh and Wainwright
(2006) where penalty functions are allowed to be nonconvex,
while the same convex loss function was used. Since the overall
objective function is nonconvex, authors discuss error bounds
obtained for any stationary point, not a global minimum. In this
aspect, our work closely follows this idea. However, our setting
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Table 1. Timings (in seconds).

(n, p) PUlasso EM Time reduction (%)

Dense matrix n = 1000, p = 10 0.94 443.72 99.79
n = 5000, p = 50 2.52 1844.98 99.86

n = 10,000, p = 100 9.45 5066.86 99.81
Sparse matrix n = 1000, p = 10 0.40 196.86 99.80

n = 5000, p = 50 2.01 614.65 99.67
n = 10,000, p = 100 4.29 1201.09 99.64

NOTE: Sparsity level in X = 0.95, n�/nu = 0.5. Total time for 100 λ values, averaged over 3 runs.

Table 2. Timings (in seconds) using sparse and dense calculation for fitting the same simulated data.

(n, p) Sparse calculation Dense calculation Time reduction (%)

n = 10,000, p = 100 12.91 19.24 32.89
n = 30,000, p = 100 25.64 38.73 33.79
n = 50,000, p = 100 39.47 57.18 30.97

NOTE: Sparsity level in X = 0.95, n�/nu = 0.5. Total time for 100 λ values, averaged over 3 runs.

differs from Loh and Wainwright (2006) in two aspects: first,
the loss function in our setting is nonconvex, in contrast with a
convex loss function (a negative log-likelihood with a canonical
link) with nonconvex regularizer in Loh and Wainwright (2006).
Also, an additive penalty function was used in the work of Loh
and Wainwright (2006), but we consider a group-structured
penalty.

After the initial draft of this article was written, we became
aware of two recent papers (Elsener and van de Geer 2018;
Mei, Bai, and Montanari 2018) which studied nonconvex M-
estimation problems in various settings including binary linear
classification, where the goal is to learn θ∗ such that E[zi|xi] =
σ(xT

i θ∗) for a known σ(·). The proposed estimators are station-
ary points of the optimization problem: argminθ n−1∑n

i=1(zi −
σ(xT

i θ))2 + λ‖θ‖1 in both papers. As the focus of our article is
to learn a model with a structural contamination in responses,
our choice of mean and loss functions differ from both papers.
In particular, our choice of mean function is different from
the sigmoid function, which was the representative example of
σ(·) in both papers, and we use the negative log-likelihood loss
in contrast to the squared loss. We establish error bounds by
proving a modified restricted strong convexity condition, which
will be discussed shortly, while error bounds of the same rates
were established in Elsener and van de Geer (2018) through a
sharp oracle inequality, and a uniform convergence result over
population risk in Mei, Bai, and Montanari (2018).

Due to the nonconvexity in the observed log-likelihood, we
limit the feasible region �0 to

�0 := {θ ∈ R
p; ‖θ‖2 ≤ r0, ‖θ‖G,2,1 ≤ Rn} (35)

for theoretical convenience. Here r0, Rn > 0 must be chosen
appropriately and we discuss these choices later. Similar restric-
tion is also assumed in Loh and Wainwright (2006).

3.1. Assumptions

We impose the following assumptions. First, we define a sub-
Gaussian tail condition for a random vector x ∈ R

p; we say
x has a sub-Gaussian tail with parameter σ 2

x , if for any fixed
v ∈ R

p, there exists σx > 0 such that E[exp(t(x − E[x])Tv)] ≤
exp(t2‖v‖2

2σ
2
x /2) for any t ∈ R. We recall that θ∗ is the true

parameter vector, which minimizes the population loss.

Assumption 1. The rows xi ∈ R
p, i = 1, 2, . . . , n of the design

matrix are iid samples from a mean-zero distribution with sub-
Gaussian tails with parameter σ 2

x . Moreover, x := E[xixT
i ] is a

positive definite and with minimum eigenvalue λmin(x) ≥ K0
where K0 is a constant bounded away from 0. We further assume
that (xij)j∈gj are independent for all j ∈ gj and gj ∈ G.

Similar assumptions appear in, for example, Negahban et
al. (2012). This restricted minimum eigenvalue condition (see,
e.g., Raskutti, Wainwright, and Yu 2010 for details) is satisfied
for weakly correlated design matrices. We further assume inde-
pendence across covariates within groups since sub-Gaussian
concentration bound assuming independence within groups is
required.

Assumption 2. For any r > 0, there exists Kr
1 such that

maxi |xT
i θ | ≤ Kr

1 a.s. for all θ in the set {θ : ‖θ − θ∗‖2 ≤
r ∩ supp(θ − θ∗) ⊆ gj for some gj ∈ G}.

Assumption 2 ensures that |xT
i θ∗| is bounded a.s., which

guarantees that the underlying probability (1 + e−xT
i θ∗

)−1 is
between 0 and 1, and |xT

i θ | is also bounded within a compact
sparse neighborhood of θ∗ which ensures concentration to
the population loss. Comparable assumptions are made in
Elsener and van de Geer (2018); Mei, Bai, and Montanari
(2018) where similar nonconvex M-estimation problems are
investigated.

Assumption 3. The ratio of the number of labeled to unlabeled
data, that is, n�/nu is lower bounded away from 0 and upper
bounded for all n = n� + nu, as n → ∞. Equivalently, there is
a constant K2 such that | log (n�/πnu) | ≤ K2

Assumption 3 ensures that the number of labeled samples n�

is not too small or large relative to n. The reason why n� cannot
be too large is that the labeled samples are only positives and we
need a reasonable number of negative samples which are a part
of the unlabeled samples.

Assumption 4 (Rate conditions). We assume a high-dimensional
regime where both (n, p) → ∞ and log p = o(n). For G =
((g1, . . . , gJ), (wj)

J
1)) and m := maxj |gj|, we assume J = �(nβ)
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for some β > 0, m = o(n ∧ J), minj wj = �(1), and maxj wj =
o(n ∧ J).

Assumption 4 states standard rate conditions in a high-
dimensional setting. In terms of the group structure, we assume
that growth of p is not totally attributed to the expansion of a
few groups; the number of groups J increases with n, and the
maximum group size m is of small order of both n and J. Also we
note that a typical choice of wj = √|gj| satisfies Assumption 4
because minj wj ≥ 1, maxj wj = √

m and
√

m/n,
√

m/J = o(1).
Finally, we define the restricted strong convexity assumption

for a loss function following the definition in Loh and Wain-
wright (2006).

Definition 3.1 (Restricted strong convexity). We say Ln satisfies
a restricted strong convexity (RSC) condition with respect to θ∗
with curvature α > 0 and tolerance function τ over �0 if the
following inequality is satisfied for all θ ∈ �0

(
�Ln(θ) − �Ln(θ

∗)
)T

� ≥ α‖�‖2
2 − τ(‖�‖G,2,1), (36)

where � := θ − θ∗ and τ(‖�‖G,2,1) = τ1‖�‖2
G,2,1

log J + m
n

+

τ2‖�‖G,2,1

√
log J + m

n
.

In the special case where ‖�‖G,2,1 = ‖�‖1 and hence

τ(‖�‖1) = τ1‖�‖2
1

log p
n

+ τ2‖�‖1

√
log p

n
, similar RSC con-

ditions were discussed in Negahban et al. (2012) and Loh and
Wainwright (2006) with different τ and �0. One of the impor-
tant steps in our proof is to prove that RSC holds for the objective
function Ln(θ).

3.2. Guarantee

Under Assumptions 1–4, we will show in Theorem 3.2 that the
RSC condition holds with high probability over {θ ; ‖θ‖2 ≤ r0}
and therefore over �0, for �0 defined in (35). Under the RSC
assumption, the following proposition, which is a modification
of Theorem 1 in Loh and Wainwright (2006), provides �1/�2 and
�2 bounds of an error vector �̂ := θ̂ − θ∗. Recall that m =
maxj |gj| (the size of the largest group) and J is the number of
groups.

Proposition 3.1. Suppose the empirical loss Ln satisfies the RSC

condition (36) with τ(‖�‖G,2,1) = τ1‖�‖2
G,2,1

log J + m
n

+

τ2‖�‖G,2,1

√
log J + m

n
over �0 where �0 is feasible region for

the objective (5), as defined in (35), and the true parameter
vector θ∗ is feasible, that is, θ∗ ∈ �0. Consider λ such that

4 max
{
‖�Ln(θ

∗)‖Ḡ,2,∞,(
τ1

2Rn(log J + m)

n
+ τ2

√
(log J + m)

n

)}
≤ λ.(37)

Let θ̂ be a stationary point of (5). Then the following error
bounds

‖�̂‖2 ≤ (max
j∈S

wj)
3
√

sλ
2α

and ‖�̂‖G,1,2 ≤ (max
j∈S

wj)
2 6sλ

α
,

(38)
hold where S := {j ∈ (1, . . . , J); θ∗

gj �= 0} and s := |S|.

The proof for Proposition 3.1 is deferred to the supplemen-
tary materials (S2.3). From (38), we note the squared �2-error
to grow proportionally with s and λ2. If θ∗ ∈ �0 and the choice

of λ = �

(√
log J+m

n

)
satisfies the inequality (37), we obtain

squared �2 error which scales as s log J+m
n , provided that the RSC

condition holds over �0. In the case of lasso we recover s log p
n

parametric optimal rate since J = p, m = 1.
With the choice of r0 ≥ ‖θ∗‖2 and Rn = �

(√
n

log J+m

)
1,

we ensure θ∗ is feasible and λ = �

(√
log J+m

n

)
satisfies the

inequality (37) with high probability. Clearly(
τ1

2Rn(log J+m)

n + τ2

√
log J+m

n

)
is of the order

√
log J+m

n with the

choice of Rn = �
(√

n
log J+m

)
, and following Lemma 3.1, we

have ‖�Ln(θ∗)‖Ḡ,2,∞ = O
(√

log J+m
n

)
with high probability.

Thus, inequality (37) is satisfied with λ = �

(√
log J+m

n

)
w.h.p.

as well.

Lemma 3.1. Under Assumptions 1–4, for any given ε > 0, there
is a positive constant c such that

P

(
‖�Ln(θ

∗)‖Ḡ,2,∞ ≥ c
√

log J + m
n

)
≤ ε

given a sample size n � (log p + m) ∨ (1/ε)1/β .

The proof for Lemma 3.1 is provided in the supplement S2.4.
Now we state the main theorem of this section which shows that
RSC condition holds uniformly over a neighborhood of the true
parameter.

Theorem 3.2. For any given r > 0 and ε > 0, there exist strictly
positive constants α, τ1, and τ2 depending on σx, K0, Kr

1, and K2
such that(

�Ln(θ) − �Ln(θ
∗)
)T

� ≥ α‖�‖2
2 − τ1‖�‖2

G,2,1
log J + m

n

−τ2‖�‖G,2,1

√
log J + m

n
(39)

holds for all θ such that ‖�‖2 := ‖θ −θ∗‖2 ≤ r with probability
at least 1 − ε, given (n, p) satisfying n � (log J + m)∨ (1/ε)1/β .

1We note that the group �1 constraint is active only if
√

n
log J+m =

O
(
(maxj wj)r0

√
J
)

. If Rn ≥ (maxj wj)r0
√

J, �0 = {θ ; ‖θ‖2 ≤
r0, ‖θ‖G,2,1 ≤ Rn} ⊇ {θ ; ‖θ‖2 ≤ r0, ‖θ‖G,2,1 ≤ (maxj wj)r0

√
J} ⊇

{θ ; ‖θ‖2 ≤ r0} by the �1-�2 inequality, that is, if ‖θ‖2 ≤ r0, ‖θ‖G,2,1 ≤
(maxj wj)r0

√
J. The other direction is trivial, and thus �0 is reduced to

�0 = {θ ; ‖θ‖2 ≤ r0}.
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The proof of Theorem 3.2 is deferred to the supplement S2.5.
There are a couple of notable remarks about Theorem 3.2 and
Proposition 3.1.

• The application of the Proposition 3.1 requires for a RSC
condition to hold over a feasible region �0. Setting r = 2r0 in
Theorem 3.2, inequality (39) holds over {θ ; ‖θ −θ∗‖2 ≤ 2r0}
w.h.p., therefore, over �0 ⊆ {θ ; ‖θ − θ∗‖2 ≤ 2r0}.

• We discuss how underlying parameters r0, σx, and constants
K0–K2 in Assumptions 1–3 are related to the �2-error bound.
From Proposition 3.1, we see that �2-error is proportional to
τ1/α and τ2/α. The proof of Theorem 3.2 reveals that τ1/α �
(σxK3/K0)

2 and τ2/α � σx(1+K2r0
1 )/K0L0, where L0 and K3

are also constants defined as L0 := inf
|u|≤K2+K2r0

1 +2r0K3

(eu/(1+

eu)2)(1 + eK2r0
1 +2r0K3)−2 and K3 � σx log(σ 2

x /K0)
1/2. As

L0 is inversely related to K2 and r0, �2-error is proportional
to the r0, σx, K2r0

1 and K2 in Assumptions 2 and 3, but
inversely related to the minimum eigenvalue bound K0 in
Assumption 1.

• The mean-squared error s log p
n in the case of J = p is verified

below in Figure 2 and both the mean-squared error and
�1 errors are minimax optimal for high-dimensional linear
regression (Raskutti, Wainwright, and Yu 2011).

To validate the mean-squared error upper bound of s log p
n

in Section 3, a synthetic dataset was generated according to
the logistic model (1) with p = 500 covariates and X ∼
N(0, I500×500). Varying s and n were considered to study the
rate of convergence of ‖θ̂ − θ∗‖2. The ratio n�/nu was fixed
to be 1. For each dataset, θ̂ was obtained by applying PUlasso

algorithm with a lambda sequence λn := cs

√
log p

n for a suitably
chosen cs for each s. We repeated the experiment 100 times and
average �2-error was calculated. In Figure 2, we illustrate the rate
of convergence of ‖θ̂ − θ∗‖2. In particular, ‖θ̂ − θ∗‖2 against√

s log p
n is plotted with varying s and n. The error appears to be

linear in
√

s log p
n , and thus we also empirically conclude that our

algorithm achieves the optimal
√

s log p
n rate.

4. Simulation Study: Classification Performance

In this section, we provide a simulation study which validates
the classification performance for PUlasso. In particular, we
provide a comparison in terms of classification performance
to state-of-the-art methods developed in Du Marthinus, Niu,
and Sugiyama (2015), Elkan and Noto (2008), and Liu et al.
(2006). The focus of this section is classification rather than
variable selection since many of the state-of-the-art methods we
compare to are developed mainly for classification and are not
developed for variable selection.

4.1. Comparison Methods

Our experiments compare six algorithms: (i) logistic regression
model assuming we know the true responses (oracle estima-

Figure 2. Ê[‖θ̂ − θ‖2] plotted against
√

s log p/n with fixed p = 500 and varying
s and n.

tor); (ii) our PUlasso algorithm; (iii) a bias-corrected logistic
regression algorithm in Elkan and Noto (2008); (iv) a second
algorithm from Elkan and Noto (2008) that is effectively a one-
step EM algorithm; (v) the biased SVM algorithm from Liu et
al. (2006); and (vi) the PU-classification algorithm based on an
asymmetric loss from Du Marthinus, Niu, and Sugiyama (2015).

The biased SVM from Liu et al. (2006) is based on the
supported vector machine (SVM) classifier with two tuning
parameters which parameterize misclassification costs of each
kind. The first algorithm from Elkan and Noto (2008) estimates
label probabilities P(z = 1|x) and corrects the bias in the classi-
fier via the estimation of P(z = 1|y = 1) under the assumption
of a disjoint support between P(x|y = 1) and P(x|y = 0).
Their second method is a modification of the first method; a unit
weight is assigned to each labeled sample, and each unlabeled
example is treated as a combination of a positive and negative
example with weight P(y = 1|x, z = 0) and P(y = 0|x, z =
0), respectively. Du Marthinus, Niu, and Sugiyama (2015) sug-
gested using asymmetric loss functions with �2-penalty. Asym-
metric loss function is considered to cancel the bias induced by
separating positive and unlabeled samples rather than positive
and negative samples. Any convex surrogate of 0-1 loss function
can be used for the algorithm. There is a publicly available
matlab implementation of the algorithm when a surrogate is the
squared loss on the author’s webpage2 and since we use their
code and implementation, the squared loss is considered.

4.2. Setup

We consider a number of different simulation settings: (i) small
and large p to distinguish the low and high-dimensional setting;
(ii) weakly and strongly separated populations; (iii) weakly and
highly correlated features; and (iv) correctly specified (logistic)

2Available at http://www.ms.k.u-tokyo.ac.jp/software.html

http://www.ms.k.u-tokyo.ac.jp/software.html
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or mis-specified model. Given dimensions (n, p), sparsity level
s, predictor autocorrelation ρ, separation distance d, and model
specification scheme (logistic, misspecified), our setup is the
following

• Choose the active covariate set S ⊆ {1, 2, . . . , p} by taking s
elements uniformly at random from (1, 2, . . . , p). We let true
θ∗ ∈ R

p such that θ∗
j = 1S(j).

• Draw samples x ∈ R
p, iid from PX = 0.5P1 + 0.5P0 where

P1 := N(μ1, ρ), P0 := N(μ2, ρ). More concretely, firstly
draw u ∼ Ber(0.5). If u = 1, draw x from P1 and draw x
from P0 otherwise.

– Mean vectors μ1, μ2 ∈ R
p are chosen so that they are

s-sparse, that is, supp(μi) = S, E[‖μ1 − μ2‖2
2] = d2

and variance of μi does not depend on d. Specifically,
we sample μ1, μ2 such that for j ∈ S, we let μ1j ∼
N(
√

(2d2 − 1)/8s, 1/
√

8s), μ2j = −μ1j, and for j /∈ S,
μij = 0 for i ∈ (1, 2).

– A covariance matrix ρ ∈ R
p×p is taken to be ρ,ij =

Kρρ|i−j| where Kρ is chosen so that 1T
S ρ1S = s. This

scaling of ρ is made to ensure that the signal strength
var(xTθ∗) = 1T

S ρ1S stays the same across ρ.

• Draw responses y ∈ {0, 1}. If scheme = logistic, we draw y
such that y ∼ Ber(Pθ∗(y = 1|x)) where Pθ∗(y = 1|x) =
1/(1 + exp(−θ∗Tx)). In contrast, if scheme = mis-specified,
we let y = 1 if x was drawn from P1, and zero otherwise; that
is, y = 1{u = 1}.

To compare performances both in low and high dimensional
setting, we consider (p = 10, s = 5) and (p = 5000, s =
5). We set the sample size n� = nu = 500 in both cases.
Autocorrelation level ρ takes values in (0, 0.2, 0.4, 0.6, 0.8). In
the high dimensional setting, we excluded algorithm (v), since
(v) requires a grid search over two dimensions, which makes the
computational cost prohibitive. For algorithms (i)–(iv), tuning
parameters λ are chosen based on the 10-fold cross-validation.

4.3. Classification Comparison

We use two criteria, misclassification rate and F1 score, to eval-
uate performances. F1 is the harmonic mean of the precision

and recall, which is calculated as F1 := 2 · precision+recall
precision·recall

.

The F1 score ranges from 0 to 1, where 1 corresponds to perfect
precision and recall. Experiments are repeated 50 times and the
average score and SEs are reported. The result for the misclas-
sification rate under correct model specification is displayed in
Figure 3.

Not surprisingly the oracle estimator has the best accuracy
in all cases. PUlasso and algorithm (vi) performs almost as well
as the oracle in the low-dimensional setting and better than
remaining methods in most cases. It must be pointed out that
both PUlasso and algorithm (vi) use additional knowledge π of
the true prevalence in the unlabeled samples. PUlasso performs
best in the high-dimensional setting while the performance
of algorithm (vi) becomes significantly worse because estima-
tion errors can be greatly reduced by imposing many 0s on

the estimates in PUlasso due to the �1-penalty (compared to
�2-penalty in algorithm (vi)). The performance of (iii)–(iv) is
greatly improved when positive and negative samples are more
separated (large d), because algorithms (iii)–(iv) assume disjoint
support between two distributions. The algorithms show similar
performance when evaluated with the F1 score metric and in the
mis-specified setting. Due to space constraints, we defer the full
set of remaining results in the supplementary materials (Section
S3).

5. Analysis of Beta-Glucosidase Sequence Data

Our original motivation for developing the PUlasso algorithm
was to analyze a large-scale dataset with positive and unlabeled
responses developed by the lab of Dr. Philip Romero (Romero,
Tran, and Abate 2015). The prior EM algorithm approach
of Ward et al. (2009) did not scale to the size of this dataset.
In this section, we discuss the performance of our PUlasso
algorithm on a dataset involving mutations of a natural BGL
enzyme. To provide context, BGL is a hydrolytic enzyme
involved in the deconstruction of biomass into fermentable
sugars for biofuel production. Functionality of the BGL enzyme
is measured in terms of whether the enzyme deconstructs
disaccharides into glucose or not. Dr. Romero used a microflu-
idic screen to generate a BGL dataset containing millions of
sequences (Romero, Tran, and Abate 2015).3

Main effects and two-way interaction models are fitted using
our PUlasso algorithm with �1 and �1/�2 penalties (we discuss
how the groups are chosen shortly) over a grid of λ values. We
test stability of feature selection and classification performance
using a modified ROC and AUC approach. Finally a scientific
validation is performed based on a follow-up experiment con-
ducted by the Romero lab. The variables selected by PUlasso
were used to design a new BGL enzyme and the performance
is compared to the original BGL enzyme.

5.1. Data Description

The dataset consists of n� = 2,647,877 labeled and functional
sequences and nu = 1,567,203 unlabeled sequences where
each of the observation σ = (σ1, . . . , σ500) is a sequence of
amino acids of length d = 500. Each of the position σj ∈
(A, R, . . . , V , ∗) takes one of M = 21 discrete values, which
correspond to the 20 amino acids in the DNA code and an extra
to include the possibility of a gap(∗).

Another important aspect of the millions of sequences gen-
erated is that a “base wild-type BGL sequence” was considered
and known to be functional (y = 1), and the millions of
sequences were generated by mutating the base sequence. Single
mutations (changing one position from the base sequence)
and double mutations (changing two positions) from the base
sequence were common but higher-order mutations were
not prevalent using the deep mutational scanning approach
in Romero, Tran, and Abate (2015). Hence, the sequences
generated were not random samples across the entire enzyme
sequence space, but rather very local sequences around the wild-

3The raw data is available in https://github.com/RomeroLab/seq-fcn-data.git

https://github.com/RomeroLab/seq-fcn-data.git
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Figure 3. Misclassification rates of algorithms (i)–(vi) under correct (logistic) model specification. Each error bar represents two SEs of the mean.

type sequence. Hence, the number of possible mutations in
each position and consequently the total number of observed
sequences is also reduced dramatically. With this dataset, we
want to determine which mutations should be applied to the
wild-type BGL sequence.

Categorical variables σ are converted into indicator variables:
x = (1{σj = l})j,l where 1 ≤ j ≤ 500, l ∈ (A, R, . . . , V , ∗) \
(σ WT

l ) for the main-effects model, x = (1{σj = l},1{σj =
l, σk = m})j,k,l,m where 1 ≤ j, k ≤ 500, j �= k, l, m ∈
(A, R, . . . , V , ∗) \ (σ WT

l or m) for the pairwise interaction models,
where σ WT

l represents the amino acid of the wild-type sequence
at the lth position. In other words, each variable corresponds to
an indicator of mutation from the base sequence or interaction
between mutations. Although there are in principle p ≈ d(M −
1) variables for a main-effects model and p ≈ d2(M − 1)2 if we
include main-effects and two-way interactions, there are many
amino acids that never appear in any position or appear only a
small number of times. For features corresponding to the main-
effects (1{σj = l} for some j and l), those sparse features are
aggregated within each position until the number of mutations
of the aggregated column reaches 100 or 1% of the total number
of mutations in each position; accordingly, each aggregated
column is an indicator of any mutations to those sparse amino
acids. For two-way interactions features (1{σj = l, σk = m}
for some j, k, l, and m), sparse features (≤ 25 out of 4,215,080
samples) are simply removed from the feature space. Using
this basic preprocessing we obtained only 3075 corresponding
to single mutations and 930 binary variables corresponding to
double mutations. They correspond to 500 unique positions
and 820 two-way interactions between positions, respectively.
As mentioned earlier, we consider both �1 and group �1/�2
penalties. We use the �1-penalty for the main-effects model and
the �1/�2 for the two-way interaction models. For the two-way
interaction model each group gj corresponds to a different posi-
tion (500 total) and pair of positions (820 total) where mutations
occur in the preprocessed design matrix and the group size
|gj| corresponds to the number of different observed mutations

in each position or pair of mutations in pair of positions (for
this dataset m = maxj |gj| = 8). Higher-order interactions
were not modeled as they did not frequently arise. Hence, the
main-effects and two-way interaction model we consider have
p = 3076 (1 + 3075) and p = 4006 (1 + 3075 + 930) and
J = 1320 (500 + 820) groups, respectively. In summary, we
consider the following two models and corresponding design
matrices

Xmain := [Intercept(1) + main effects(3075)]
∈ {0, 1}4,215,080×3076

Xint := [Intercept(1) + main effects(3075)
+two way interactions(930)] ∈ {0, 1}4,215,080×4006

and the response vector z = [1, . . . , 1, 0, . . . , 0]T

∈ {0, 1}4,215,080.

5.2. Classification Validation and Model Stability

Next we validate the classification performance for both the
main-effect and two-way interaction models. We fit models
using 90% of the randomly selected samples both from the posi-
tive and unlabeled set and use area under the ROC curve (AUC)
to evaluate the classification performance on the 10% of the
hold-out set. Since positive and negative samples are mixed in
the unlabeled test dataset this is a nontrivial task with presence-
only responses. A naive approach is to treat unlabeled samples
as negative and estimate AUC, but if we do so, the AUC is
inevitably downward-biased because of the inflated false posi-
tive (FP) rate. We note that a TP rate can be estimated in an
unbiased manner using positive samples. To adjust such bias, we
follow the methodology suggested in Jain, White, and Radivojac
(2017) and adjust FP rate and AUC value using the following
equation

FPadj = FPnaive − πTP
1 − π

, AUCadj = AUCnaive − π/2
1 − π

where π is the prevalence of positive samples.
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Figure 4. ROC curves of main effects (M) and two-way interaction model (M+I) with
λ chosen based on 10-fold cross-validation.

Table 3. Summary of stability scores across all tuning parameter λ values.

1st Qu. Median Mean 3rd Qu.

M 93.3% 94.9% 94.9% 96.8%
M+I 97.9% 98.8% 98.4% 99.3%

As Figure 4 shows, we have a significant improvement in
AUC over random assignment (AUC = 0.5) in both the main
effect (AUC = 0.7933) and two-way interaction (AUC = 0.7938)
models. The performances of the two models in terms of AUC
values are very similar at their best λ values chosen by 10-fold
cross-validation. This is not very surprising as only a small num-
ber of two-way interactions are observed in the experiments.

We also examined the stability of the selected features
for both models as the training data changes. Following the
methodology of Kalousis, Prados, and Hilario (2007), we
measure similarity between two subsets of features s, s′ using

SS(s, s′) defined as SS(s, s′) := 1 − |s| + |s′| − 2|s ∩ s′|
|s| + |s′| − |s ∩ s′| . SS takes

values in [0, 1], where 0 means that there is no overlap between
the two sets, and 1 that the two sets are identical. Ss is computed
for each pair of two training folds (i.e., we have 9·10

2 pairs) using
selected features and computed values are finally averaged over
all pairs. Feature selection turned out to be very stable across all
tuning parameter λ values: on average we had about 95% overlap
of selection in main effect model (M) and about 98% overlap in
main effect+interaction model (M+I). Stability score is higher in
the latter model since we do a feature selection on groups, whose
number is much less than individual variables (1320 groups vs.
3076 individual variables).

5.3. Scientific Validation: Designed BGL Sequence

Finally, we provide a scientific validation of the mutations
estimated by our PUlasso algorithm. In particular, we fit

Table 4. Ten positive mutations.

Base/position/mutated

T197P E495G
K300P A38G
G327A S486P
A150D T478S
D164E D481N

Figure 5. Kinetics 10 positive mutations used in the lab(base
state/position/mutated state) and kinetics of designed BGL enzyme versus
wild-type (WT) BGL sequence. The designed BGL enzyme based on mutations
from Table 4 displays faster kinetics than the WT BGL sequence.

the model with the PUlasso algorithm and selected the best
λ = 0.0001 based on the 10-fold cross-validation. We use
the top 10 mutations based on the largest size of coefficients
with positive signs from our PUlasso algorithm because we are
interested in mutations that enhance the performance of the
sequence. Dr. Romero’s lab designed the BGL sequence with
the 10 positive mutations from Table 4. This sequence was
synthesized, expressed, and assayed for its hydrolytic activity.
Hence, the designed sequence has 10 mutations compared to
the wild-type (base) BGL sequence.

Figure 5 shows firstly that the designed protein sequence
folds which in itself is remarkable given that 10 positions are
mutated. Secondly, Figure 5 shows that the designed sequence
decomposes disaccharides into glucose more quickly than the
wild-type sequence. These promising results suggest that our
variable selection method is able to identify positions of the
wild-type sequences with improved functionality.

6. Conclusion

In this article, we developed the PUlasso algorithm for both
variable selection and classification for high-dimensional classi-
fication with presence-only responses. Theoretically, we showed
that our algorithm converges to a stationary point and every
stationary point within a local neighborhood of θ∗ achieves an
optimal mean squared error (up to constant). We also demon-
strated that our algorithm performs well on both simulated and
real data. In particular, our algorithm produces more accurate
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results than the existing techniques in simulations and performs
well on a real biochemistry application.

Supplementary Materials

In the supplementary material, we provide proofs of results in the Sections 2
and 3 of the main article. In addition, extra simulation results are included.
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